Scientists from China show a bionic approach combining features of a seagull’s wing to one called a Gurney flap, can greatly improve wind turbine performance. A Gurney flap is an engineered flow control accessory. Combining engineered flaps with the other structures inspired by seagull wings improves lift and reduces stalling in wind energy turbine blades.

The Gurney flap is a small tab projecting at right angles from the trailing edge of a wing. Its presence disturbs wind flow patterns and is especially effective at improving performance at low angles of attack. In aerodynamics, the angle of attack is the angle between a line through the center of an aircraft wing and the oncoming flow of air.

The paper describing the work has been published in the Journal of Renewable and Sustainable Energy, by AIP Publishing.

Wind energy relies on efficient wind turbine blades, which act as airfoils, structures akin to an airplane wing. Air flow control accessories similar to those found in aircraft improve the turbine blade’s aerodynamic performance.

Although Gurney flaps improve performance of airfoils at low attack angles, they are not ideal for large angles of attack. Research has shown although Gurney flaps can significantly improve the performance of wind turbines in some situations, the turbine speed will be reduced.

Airflow patterns around a Gurney flap. Image Credit: Liming Wu, Xiaomin Liu, Yang Liu, and Guang Xi, School of Energy and Power Engineering, Xi’an Jiaotong University. Click image for the largest view. More images at the AIP Publishung link.

Bionic flow control is a relatively new approach that imitates biological flight control systems — in other words, wings and feathers. The idea comes from the observation that during landing or in a gust of wind, the feathers on the top of a bird’s wings will pop out, creating a natural flap.

Computational and experimental studies show bionic feather-inspired flaps can increase lift and delay the onset of stalling at high angles of attack. Despite their advantages, adding bionic flaps can also reduce lift, particularly before a stall sets in. Therefore, the investigators tried an approach combining Gurney flaps with bionic features.

To achieve the best aerodynamic performance, the scientists simulated the use of the combined flow control accessory in a variety of situations, including high and low angle of attack and pre- and post-stall scenarios. They compared their computational simulations to experimental results for an aircraft wing undergoing a dynamic stall.

Author Xiaomin Liu said, “The overall trend of the calculated lift curve is in good agreement with the experimental measurement results. Therefore, our simulation accuracy is considered acceptable, because the dynamic stall and its control are notoriously difficult to predict.”

According to Liu, the combined flow control accessory effectively improves the lift coefficient of the airfoil, who added, “For angles of attack in the range 16 to 24 degrees, the maximum lift coefficient of the airfoil is increased by 15% when a combination of Gurney flap and bionic flap is used.”

***

While the study doesn’t seem to be or great importance, there is likely a strong case for integrating this technology. The wind is seldom truly at a steady state. An accessory such as combined bionic features and Gurney flaps might just be able to steady up a turbine in a gusty wind. That would be preferable to the current technology which is usually a large disk brake system trying to keep the generator set running smoothly.

These wouldn’t be simple systems, making for a much more complex blade, but turbine blades and turbines as a whole have a short life expectancy of 20 years. A more complex blade might be what is needed to reduce the stress on the rest of the turbine that might just make the whole system last longer.


Comments

Name (required)

Email (required)

Website

Speak your mind

css.php