Tokyo Institute of Technology researchers have brought all solid state batteries one step closer to becoming the powerhouse of next-generation electronics. The researchers from Tokyo Tech, AIST, and Yamagata University have introduced a strategy to restore the batteries low electrical resistance. They also explore the underlying reduction mechanism, paving the way for a more fundamental understanding of the workings of all-solid-state lithium batteries.

Drastic reduction of the solid electrolyte electrode interface resistance via annealing in battery form. Image Credit: Kobayashi et al, ACS Applied Materials & Interfaces. Click image for the largest view or click the press release link or the study link.

All solid state lithium batteries have become the new craze in materials science and engineering as conventional lithium-ion batteries can no longer meet the standards for advanced technologies, such as electric vehicles, which demand high energy densities, fast charging, and long cycle lives. All-solid-state batteries, which use a solid electrolyte instead of a liquid electrolyte found in traditional batteries, not only meet these standards but are comparatively safer and more convenient as they have the possibility to charge in a short time.

However, the solid electrolyte comes with its own challenge. It turns out that the interface between the positive electrode and solid electrolyte shows a large electrical resistance whose origin is not well understood. Furthermore, the resistance increases when the electrode surface is exposed to air, degrading the battery capacity and performance. While several attempts have been made to lower the resistance, none have managed to bring it down to 10 Ω cm2 (ohm centimeter-squared), the reported interface resistance value when not exposed to air.

Now, in a recent study published in ACS Applied Materials & Interfaces, a research team led by Prof. Taro Hitosugi from Tokyo Institute of Technology (Tokyo Tech), Japan, and Shigeru Kobayashi, a doctoral student at Tokyo Tech, may have finally solved this problem. By establishing a strategy for restoring the low interface resistance as well as unraveling the mechanism underlying this reduction, the team has provided valuable insights into the manufacturing of high-performance all-solid-state batteries. The study was the result of a joint research by Tokyo Tech, National Institute of Advanced Industrial Science and Technology (AIST), and Yamagata University.

To start off, the team prepared thin film batteries comprising a lithium negative electrode, an LiCoO2 positive electrode, and an Li3PO4 solid electrolyte. Before completing the fabrication of a battery, the team exposed the LiCoO2 surface to air, nitrogen (N2), oxygen (O2), carbon dioxide (CO2), hydrogen (H2), and water vapor (H2O) for 30 minutes.

To their surprise, they found that exposure to N2, O2, CO2, and H2, did not degrade the battery performance compared to a non-exposed battery. “Only H2O vapor strongly degrades the Li3PO4 — LiCoO2 interface and increases its resistance drastically to a value more than 10 times higher than that of the unexposed interface,” said Prof. Hitosugi.

The team next performed a process called “annealing,” in which the sample underwent a heat treatment at 150° C for an hour in battery form i.e. with the negative electrode deposited. Amazingly, this reduced the resistance down to 10.3 Ω cm2, comparable to that of the unexposed battery! cm2, comparable to that of the unexposed battery!

By performing numerical simulations and cutting-edge measurements, the team then revealed that the reduction could be attributed to the spontaneous removal of protons from within the LiCoO2 structure during annealing.

Prof. Hitosugi concluded, “Our study shows that protons in the LiCoO2 structure play an important role in the recovery process. We hope that the elucidation of these interfacial microscopic processes would help widen the application potential of all-solid-state batteries.”

***

This looks like serendipity from diligent step by step analysis. Congratulations are in order! This work is quite a leap forward for the solid state battery enthusiasts. One surely hopes that this work will help with all the others driving to a practical and economical solid state lithium battery.


Comments

Name (required)

Email (required)

Website

Speak your mind

css.php