Ji-Seon Kim, a senior lecturer in experimental solid-state physics at Imperial College London, who has along with her colleagues, come up with a plastic solar panel technology that might help bring the prices down.

Why haven’t solar technologies been more widely adopted?  Quite simply, “they’re too expensive,” said Kim.

Kim and her colleagues describe their new approach to making cheaper, more efficient solar panels in the paper “Understanding the Relationship between Molecular Order and Charge Transport Properties in Conjugated Polymer Based Organic Blend Photovoltaic Devices” published in The Journal of Chemical Physics, produced by AIP Publishing.

“To collect a lot of sunlight you need to cover a large area in solar panels, which is very expensive for traditional inorganic – usually silicon – photovoltaics,” explains Kim.  The high costs arise because traditional panels must be made from high purity crystals that require high temperatures and vacuum conditions to manufacture.

The polymer blend morphology without (left) and with (right) nanowires.  Click image for the largest view.

The polymer blend morphology without (left) and with (right) nanowires. Click image for the largest view.

A cheaper solution is to construct the photovoltaic devices out of organic compounds – building what are essentially plastic solar cells. Organic semiconducting materials, and especially polymers, can be dissolved to make an ink and then simply “printed” in a very thin layer, some 100 billionths of a meter thick, over a large area. “Covering a large area in plastic is much cheaper than covering it in silicon, and as a result the cost per Watt of electricity-generating capacity has the potential to be much lower,” she said.

One major difficulty with doing this, however, is controlling the arrangement of polymer molecules within the thin layer. In their paper, Kim and colleagues describe a new method for exerting such control. “We have developed an advanced structural probe technique to determine the molecular packing of two different polymers when they are mixed together,” she says. By manipulating how the molecules of the two different polymers pack together, Kim and her colleagues created ordered pathways – or “nanowires” – along which electrical charges can more easily travel. This enables the solar cell to produce more electrical current, she said.

“Our work highlights the importance of the precise arrangement of polymer molecules in a polymer solar cell for it to work efficiently,” said Kim, who expects polymer solar cells to reach the commercial market within 5 to 10 years.

Kim’s colleagues are lead author Sebastian Wood, Jong Soo Kim, David T. James, Wing C. Tsoi, and Craig E. Murphy.

Sounds great.  Describes simply enough.  But like all things of this type, will it scale up to mass manufacturing?  Roll to roll production lit up lots of hopes and is barely out there now.  Maybe these scientists have a worthwhile solution.


1 Comment so far

  1. Dr Green on October 25, 2013 5:33 AM

    With plastic solar panels also being manufactured solar systems can become a reality for many who want to make the switch but are avoiding it due to its cost.

Name (required)

Email (required)


Speak your mind