Stanford University researchers now propose three separate ways to avoid blackouts if an economy transitions all its energy to electricity or direct heat and provides the energy with 100 percent wind, water and sunlight. It a relief to know someone is thinking about reducing the risks of renewables to an economy. Renewable energy solutions are often hindered by the inconsistencies of power produced by wind, water and sunlight and the continuously fluctuating demand for energy.

New research by Mark Z. Jacobson, a professor of civil and environmental engineering at Stanford University, and colleagues at the University of California, Berkeley, and Aalborg University in Denmark assert in a very big claim that they have found several solutions to making clean, renewable energy reliable enough to power at least 139 countries.

In their paper, published as a manuscript in Renewable Energy, the researchers propose three different methods of providing consistent power among all energy sectors – transportation; heating and cooling; industry; and agriculture, forestry and fishing – in 20 world regions encompassing 139 countries after all sectors have been converted to 100% clean, renewable energy. Jacobson and colleagues previously developed roadmaps for transitioning 139 countries to 100 percent clean, renewable energy by 2050 with 80 percent of that transition completed by 2030. The present study examines ways to keep the grid stable with these roadmaps.

Jacobson, who is also a senior fellow at the Stanford Precourt Institute for Energy and the Stanford Woods Institute for the Environment said, “Based on these results, I can more confidently state that there is no technical or economic barrier to transitioning the entire world to 100 percent clean, renewable energy with a stable electric grid at low cost. This solution would go a long way toward eliminating global warming and the 4 million to 7 million air pollution-related deaths that occur worldwide each year, while also providing energy security.”

The paper builds on a previous 2015 study by Jacobson and colleagues that examined the ability of the grid to stay stable in the 48 contiguous United States. That study only included one scenario for how to achieve the goals. Some criticized that paper for relying too heavily on adding turbines to existing hydroelectric dams – which the group suggested in order to increase peak electricity production without changing the number or size of the dams. The previous paper was also criticized for relying too much on storing excess energy in water, ice and underground rocks. The solutions in the current paper address these criticisms by suggesting several different solutions for stabilizing energy produced with 100 percent clean, renewable sources, including solutions with no added hydropower turbines and no storage in water, ice or rocks.

Jacobson said, “Our main result is that there are multiple solutions to the problem. This is important because the greatest barrier to the large-scale implementation of clean renewable energy is people’s perception that it’s too hard to keep the lights on with random wind and solar output.”

At the heart of this study is the need to match energy supplied by wind, water and solar power and storage with what the researchers predict demand to be in 2050. To do this, they grouped 139 countries – for which they created energy roadmaps in a previous study – into 20 regions based on geographic proximity and some geopolitical concerns. Unlike the previous 139-country study, which matched energy supply with annual-average demand, the present study matches supply and demand in 30-second increments for 5 years (2050-2054) to account for the variability in wind and solar power as well as the variability in demand over hours and seasons.

For the study, the researchers relied on two computational modeling programs. The first program predicted global weather patterns from 2050 to 2054. From this, they further predicted the amount of energy that could be produced from weather-related energy sources like onshore and offshore wind turbines, solar photovoltaics on rooftops and in power plants, concentrated solar power plants and solar thermal plants over time. These types of energy sources are variable and don’t necessarily produce energy when demand is highest.

The group then combined data from the first model with a second model that incorporated energy produced by more stable sources of electricity, like geothermal power plants, tidal and wave devices, and hydroelectric power plants, and of heat, like geothermal reservoirs. The second model also included ways of storing energy when there was excess, such as in electricity, heat, cold and hydrogen storage. Further, the model included predictions of energy demand over time.

With the two models, the group was able to predict both how much energy could be produced through more variable sources of energy, and how well other sources could balance out the fluctuating energy to meet demands.

Scenarios based on the modeling data avoided blackouts at low cost in all 20 world regions for all five years examined and under three different storage scenarios. One scenario includes heat pumps – which are used in place of combustion-based heaters and coolers – but no hot or cold energy storage; two, add no hydropower turbines to existing hydropower dams; and one has no battery storage. The fact that no blackouts occurred under three different scenarios suggests that many possible solutions to grid stability with 100 percent wind, water and solar power are possible, a conclusion that contradicts previous claims that the grid cannot stay stable with such high penetrations of just renewables.

Overall, the researchers found that the cost per unit of energy – including the cost in terms of health, climate and energy — in every scenario was about one quarter what it would be if the world continues on its current energy path. This is largely due to eliminating the health and climate costs of fossil fuels. Also, by reducing water vapor, the wind turbines included in the roadmaps would offset about 3 percent of global warming to date.

Although the cost of producing a unit of energy is similar in the roadmap scenarios and the non-intervention scenario, the researchers found that the roadmaps roughly cut in half the amount of energy needed in the system. So, consumers would actually pay less. The vast amount of these energy savings come from avoiding the energy needed to mine, transport and refine fossil fuels, converting from combustion to direct electricity, and using heat pumps instead of conventional heaters and air conditioners.

Mark Delucchi, co-author of the paper and a research scientist at the University of California, Berkeley said, “One of the biggest challenges facing energy systems based entirely on clean, zero-emission wind, water and solar power is to match supply and demand with near-perfect reliability at reasonable cost. Our work shows that this can be accomplished, in almost all countries of the world, with established technologies.”

Jacobson and his colleagues said that a remaining challenge of implementing their roadmaps is that they require coordination across political boundaries.

“Ideally, you’d have cooperation in deciding where you’re going to put the wind farms, where you’re going to put the solar panels, where you’re going to put the battery storage,” said Jacobson. “The whole system is most efficient when it is planned ahead of time as opposed to done one piece at a time.”

In light of this geopolitical complication, they are also working on smaller roadmaps to help individual towns, many of which have already committed to achieving 100 percent renewable energy.

These academic papers are entertaining. The predicting and forecasting some 32 years out is quite an example of hubris. These fine folks seem to have started with little more than a study, now two or so years old, and have rebuilt it to overcome some objections in the details.

That leaves us with an example of an experimental exercise in computer modeling with a pre-biased set of assumptions to start. The list of possible variations of the inputs must be staggering, the potential variations of economic change over 32 years can only be imagined. If one asked high level academics to forecast today 32 years ago, the chances they would be even close are – very remote.

There don’t seem to be any sensible rules on transitioning to renewables. Hard realities like more energy, cheaper and better produced are simply absent. The technology gains lead the conversation and the enthusiasm drives political and economic incentives that so twist the economics that the real costs are lost, which ratepayers pay, taxpayers subsidize and economic progress is stifled to support an ideological energy supply rather than the most advantageous ones.

Your humble writer was entertained. A little while. Until one wonders how many mega trillions of dollars are needed to pay for it all and how to persuade or compel folks to go along. There’s your “Uh Oh Moment.”

Drexel University researchers have uncovered exceptionally efficient gas separation properties in a nanomaterial called MXene that could be incorporated into the membranes used to purify hydrogen.

Hydrogen is one of the most abundant elements on Earth and an exceptionally clean fuel source. While it is making its way into the fuel cells of electric cars, busses and heavy equipment, its widespread use is hampered by the expensive gas-separation process required to produce pure hydrogen.

The two-dimensional, metallic material MXene shows exceptional gas-separation abilities because of its layers, pores and chemical composition. Image Credit: Drexel University. Click image for the largest view.

But that process could soon become more efficient and cost-effective thanks to a discovery by an international team of researchers, led in the U.S. by Drexel University. The group has uncovered exceptionally efficient gas separation properties in a nanomaterial called MXene that could be incorporated into the membranes used to purify hydrogen.

While hydrogen is present in a wide variety of molecules and materials in nature – water, a combination of hydrogen and water, foremost among them – it does not naturally exist in its pure elemental form – that is, hydrogen on its own, on Earth. To separate hydrogen from the other elements to which it commonly bonds, it requires introducing an electric current to excite and split apart the atoms in water molecules, or filtering a gaseous mixture containing hydrogen, through a membrane to separate the hydrogen from carbon dioxide or hydrocarbons.

The process of gas separation via membrane is the more effective and affordable option, so in recent years researchers have been ramping up efforts to develop membranes that can thoroughly and quickly filter out hydrogen.

A study recently published in the journal Nature Communications, indicates that using MXene material in gas-separation membranes could be the most efficient way to purify hydrogen gas. The research, led by Haihui Wang, PhD, a professor from South China University of Technology and Yury Gogotsi, PhD, Distinguished University and Bach professor in Drexel’s College of Engineering, in the Department of Materials Science and Engineering, shows that the nanomaterial’s two-dimensional structure enables it to selectively reject large gas molecules, while letting hydrogen slip between the layers.

Professor Gogotsi said, “In this report we show how exfoliated two-dimensional MXene nanosheets can be used as building blocks to construct laminated membranes for gas separation for the first time. We demonstrated this using model systems of hydrogen and carbon dioxide.”

Working in collaboration with researchers from South China University of Technology and Jilin University, in China, and Leibniz University of Hannover, in Germany, the Drexel team reported that membranes created using MXene nanosheets outperform the top-of-the-line membrane materials currently in use – both in permeability and selectivity.

Many different kinds of membranes are currently in use throughout the energy industry, for example for purifying coolant water before it is released, and for refining natural gas before it is distributed for use. Gas separation facilities also use them to retrieve nitrogen and oxygen from the atmosphere. This study opens the door for an expanded use of membrane technology, with the possibility of tailoring the filtration devices to sift out a large number of gaseous molecules.

MXene’s advantage over materials currently being used and developed for gas separation is that both its permeability and filtration selectivity are tied to its structure and chemical composition. By contrast, other membrane materials, such as graphene and zeolite, do their filtering only by physically trapping – or sieving – molecules in tiny grids and channels, like a net.

MXenes special filtration properties exist because they are created by chemically etching out layers from a solid piece of material, called a MAX phase. This process forms a structure that is more like a sponge, with slit pores of various sizes. Gogotsi’s Nanomaterials Research Group, which has been working with MXenes since 2011, can predetermine the size of the channels by using different types of MAX phases and etching them with different chemicals.

The channels themselves can be created in a way that makes them chemically active, so they are able to attract – or adsorb – certain molecules as they pass through. Thus, a MXene membrane functions more like a magnetic net and it can be designed to trap a wide variety of chemical species as they pass through.

Gogotsi explained, “This is one of the key advantages of Mxenes. We have dozens of MXenes available which can be tuned to provide selectivity to different gasses. We used titanium carbide MXene in this study, but there are at least two dozen other MXenes already available, and more are expected to be studied in the next couple of years, which means it could be developed for a number of different gas separation applications.”

The versatile two-dimensional material, which was discovered at Drexel in 2011, has already shown its ability to improve efficiency of electric storage devices, stave off electromagnetic interference and even purify water. Studying its gas separation properties was the next logical step, according to Gogotsi.

“Our work on water filtration, the sieving of ions and molecules, and supercapacitors, which also involves ion sieving, suggested that gas molecules may also be sieved using MXene membranes with atomically thin channels between the MXene sheets,” he said. “However, we were lacking experience in the gas separation field. This research would not have been possible without our Chinese collaborators, who provided the experience needed to achieve the goal and demonstrated that MXene membranes can efficiently separate gas mixtures.”

In order for MXene to make its way into industrial membranes, Gogotsi’s group will need to continue improving its durability, chemical and temperature stability and reduce the cost of production.

University of Texas at Austin and Monash University researchers have recently discovered a new, efficient way to extract lithium and other metals and minerals from water.

With continual technological advancements in mobile devices and electric cars, the global demand for lithium has quickly outpaced the rate at which it can be mined or recycled. The proposed technology may be able to recover enough lithium to power 200 electric cars or 1.6 million smartphones each week from some Texas gas wells.

The working group published their findings in the journal Science Advances.

The team’s technique uses a metal-organic-framework membrane that mimics the filtering function, or “ion selectivity,” of biological cell membranes. The membrane process easily and efficiently separates metal ions, opening the door to revolutionary technologies in the water and mining industries and potential economic growth opportunities in Texas.

Schematic illustration of ion transport through a ZIF-8/GO/AAO membrane with ~3.4 Å pore windows for ion selectivity and ~11.6 Å pore cavities for fast ion transport (drawing not to scale). The inset indicates the crystal structure of ZIF-8. Image Credit: Monash University. Click image for the largest view.

The team’s process could also help with water desalination. Unlike the existing reverse-osmosis membranes responsible for more than half of the world’s current water desalination capacity, the new membrane process dehydrates ions as they pass through the membrane channels and removes only select ions, rather than indiscriminately removing all ions. The result is a process that costs less and consumes less energy than conventional methods.

The team’s material operates on principles inspired by highly effective biological cell membranes, whose mechanism of operation was discovered by Roderick MacKinnon and Peter Agre and was the subject of the 2003 Nobel Prize in chemistry.

The natural gas producing Barnett and Eagle Ford shale formations in Texas contain high amounts lithium, and the produced wastewater generated by hydraulic fracturing in those areas has high concentrations of lithium. Instead of discarding the produced water, the team’s membrane filter could extract the resulting lithium and put it to use in other industries.

Each well in the Barnett and Eagle Ford can generate up to 300,000 gallons of produced water per week. Using their new process, Freeman and his team conservatively estimate that from just one week’s worth of produced water, enough lithium can be recovered to power 200 electric cars or 1.6 million smartphones.

Freeman said, “Produced water from shale gas fields in Texas is rich in lithium. Advanced separation materials concepts such as ours could potentially turn this waste stream into a resource recovery opportunity.”

Anita Hill chief scientist at Monash University Department of Chemical Engineering and the Commonwealth Scientific and Industrial Research Organization in Australia said, “The prospect of using metal-organic frameworks for sustainable water filtration is incredibly exciting from a public-good perspective, while delivering a better way of extracting lithium ions to meet global demand [that] could create new industries.”

Of interest is the funding for this research was provided by the Australian Research Council, the Australian-American Fulbright Commission, the Commonwealth Scientific and Industrial Research Organization and the National Computational Infrastructure in Australia.

Of course this technology is in its infancy, but its working at lab scale which is a good start. Right now lithium is worth enough to cause great interest in recovery techniques that could simplify the refining of lithium as well as expose new reserves that are so deep as to defy economical mining.

Not only is this research a new path to recover lithium, it offers a way to clean up water. It also is likely a step into a new field that may show more materials to recover other products from deep in the earth and offer new ways to clean and recycle water.

This is very much – A Grand Discovery. Pretty soon drillers of most all wells for oil and gas might want to get quickly assayed!

Columbia University School of Engineering and Applied Science engineering researchers have developed a prototype of a high-performance flexible lithium-ion battery. The battery design demonstrates both good flexibility and high energy density at the same time.

The very cleverly designed battery is shaped like the human spine and allows remarkable flexibility, high energy density, and stable voltage no matter how it is flexed or twisted. The device could help advance applications for wearable electronics.

Schematic of the structure and the fabrication process of Yang’s spine-like battery. (a) Schematic illustration of bio-inspired design, the vertebrae correspond to thick stacks of electrodes and soft marrow corresponds to unwound part that interconnects all the stacks. (b) The process to fabricate the spine-like battery, multilayers of electrodes were first cut into designed shape, then strips extending out were wound around the backbone to form spine-like structure. Image Credit: Yuan Yang/Columbia Engineering. Click image for the largest view.

The rapid development of flexible and wearable electronics is giving rise to an exciting range of applications, from smart watches and flexible displays – such as smart phones, tablets, and TV – to smart fabrics, smart glass, transdermal patches, sensors, and more.

With this increase in product range, demand has increased for high-performance flexible batteries. But up to now researchers have had difficulty obtaining both good flexibility and high energy density concurrently in lithium-ion batteries.

A team led by Yuan Yang, assistant professor of materials science and engineering in the department of applied physics and mathematics at Columbia Engineering, has developed a prototype that addresses this challenge: a lithium ion battery shaped like the human spine that allows remarkable flexibility, high energy density, and stable voltage no matter how it is flexed or twisted.

The study paper has been published in Advanced Materials.

Yang said, “The energy density of our prototype is one of the highest reported so far. We’ve developed a simple and scalable approach to fabricate a flexible spine-like lithium ion battery that has excellent electrochemical and mechanical properties. Our design is a very promising candidate as the first-generation, flexible, commercial lithium-ion battery. We are now optimizing the design and improving its performance.”

Yang, whose group explores the composition and structure of battery materials to realize high performance, was inspired by the suppleness of the spine while doing sit-ups in the gym. The human spine is highly flexible and distortable as well as mechanically robust, as it contains soft marrow components that interconnect hard vertebra parts. Yang used the spine model to design a battery with a similar structure. His prototype has a thick, rigid segment that stores energy by winding the electrodes (“vertebrae”) around a thin, flexible part (“marrow”) that connects the vertebra-like stacks of electrodes together. His design provides excellent flexibility for the whole battery.

Yang explained, “As the volume of the rigid electrode part is significantly larger than the flexible interconnection, the energy density of such a flexible battery can be greater than 85 percent of a battery in standard commercial packaging. Because of the high proportion of the active materials in the whole structure, our spine-like battery shows very high energy density – higher than any other reports we are aware of. The battery also successfully survived a harsh dynamic mechanical load test because of our rational bio-inspired design.”

Yang’s team cut the conventional anode/separator/cathode /separator stacks into long strips with multiple “branches” extending out 90 degrees from the “backbone.” Then they wrapped each branch around the backbone to form thick stacks for storing energy, like vertebrae in a spine. With this integrated design, the battery’s energy density is limited only by the longitudinal percentage of vertebra-like stacks compared to the whole length of the device, which can easily reach over 90 percent.

The battery shows stable capacity upon cycling, as well as a stable voltage profile no matter how it is flexed or twisted. After cycling, the team disassembled the battery to examine the morphology change of electrode materials. They found that the positive electrode was intact with no obvious cracking or peeling from the aluminum foil, confirming the mechanical stability of their design.

To further illustrate the flexibility of their design, the researchers continuously flexed or twisted the battery during discharge, finding that neither bending nor twisting interrupted the voltage curve. Even when the cell was continuously flexed and twisted during the whole discharge, the voltage profile remained. The battery in the flexed state was also cycled at higher current densities, and the capacity retention was quite high (84% at 3C, the charge in 1/3 of an hour). The battery also survived a continuous dynamic mechanical load test, something rarely reported in earlier studies.

Yang said, “Our spine-like design is much more mechanically robust than are conventional designs We anticipate that our bio-inspired, scalable method to fabricate flexible Li-ion batteries could greatly advance the commercialization of flexible devices.”

It is a brilliantly clever design. One just hopes that the battery construction process isn’t expensive, because that comparison is the make or break point on what designs get to commercial scale. It looks low cost, maybe even CNC level or better, a process engineer will find this entrancing.

In a bold press release Washington State University (WSU) researchers announced they have found a way to more efficiently generate hydrogen from water – an important key to making clean energy more viable. Using inexpensive nickel and iron, the researchers developed a very simple, five-minute method to create large amounts of a high-quality nanofoam catalyst required for the chemical reaction to split water.

The team described their method in the February issue of the journal Nano Energy.

WSU researchers can create large amounts of inexpensive nanofoam catalysts that can facilitate the generation of hydrogen on a large scale by splitting water molecules.  Image Credit: Washington State University.  Click image for the largest view.

Energy conversion and storage is a key to the clean energy economy. Because solar and wind sources produce power only intermittently, there is a critical need for ways to store and save the electricity they create. One of the most promising ideas for storing renewable energy is to use the excess electricity generated from renewables to split water into oxygen and hydrogen. Hydrogen has myriad uses in industry and could be used to power hydrogen fuel-cell cars.

Industries have not widely used the water splitting process, however, because of the prohibitive cost of the precious metal catalysts that are required – usually platinum or ruthenium. Many of the methods to split water also require too much energy, or the required catalyst materials break down too quickly.

In their work, the researchers, led by professor Yuehe Lin in the School of Mechanical and Materials Engineering, used two abundantly available and cheap metals to create a porous nanofoam that worked better than most catalysts that currently are used, including those made from the precious metals. The catalyst they created looks like a tiny sponge. With its unique atomic structure and many exposed surfaces throughout the material, the nanofoam can catalyze the important reaction with less energy than other catalysts. The catalyst showed very little loss in activity in a 12-hour stability test.

Shaofang Fu, a WSU Ph.D. student who synthesized the catalyst and did most of the activity testing said, “We took a very simple approach that could be used easily in large-scale production.”

The WSU researchers collaborated on the project with researchers at Advanced Photon Source at Argonne National Laboratory and Pacific Northwest National Laboratory.

Junhua Song, another WSU Ph.D. student who worked on the catalyst characterization said, “The advanced materials characterization facility at the national laboratories provided the deep understanding of the composition and structures of the catalysts.”

The researchers are now seeking additional support to scale up their work for large-scale testing.

Lin said, “This is just lab-scale testing, but this is very promising.”

Lots of potential in this very early stage study. The abstract shows the testing ran 12 hours with negligible activity loss, which if the material is cheap enough to produce, is promising. Low voltage is also indicated. But specific efficiency is missing so far.

We’ll be watching for more on this.