University of Bern has led an international research team that has succeeded in developing an electrocatalyst for hydrogen fuel cells which, in contrast to the catalysts commonly used today, does not require a carbon carrier and is therefore much more stable. The new process is industrially applicable and can be used to further optimize fuel […]

Virginia Tech chemists are working on a new study that solves a key, fundamental barrier in the electrochemical water splitting process. Virginia Tech’s Lin Lab can demonstrate a new technique to reassemble, revivify, and reuse a catalyst that allows for energy-efficient water splitting. One proposed paradigm for shifting away from fossil fuels is the hydrogen […]

A research team led by Kazuhiko Maeda at the Tokyo Institute of Technology has developed a new photocatalyst. They have developed a hybrid material constructed from a metal oxide nanosheet and a light-absorbing molecule for splitting water molecules (H2O) to obtain dihydrogen (H2) under sunlight. Since H2 can be used as carbon-free fuel, this study […]

Rice University researchers have integrated high-efficiency perovskite solar cells and electrode catalysts into an efficient, low-cost device that splits water to produce hydrogen fuel. The platform developed by the Brown School of Engineering lab of Rice materials scientist Jun Lou integrates catalytic electrodes and perovskite solar cells that, when triggered by sunlight, produce electricity. The […]

DOE/Idaho National Laboratory’s researchers have developed a new electrode material for an electrochemical cell that can efficiently convert excess electricity and water into hydrogen. When demand for electricity increases, the electrochemical cell is reversible, converting hydrogen back into electricity for the grid. The hydrogen could also be used as fuel for heat, vehicles or other […]

keep looking »