Open Image…Save ImageOpen Image (using #TmpD/ia)… Open Image…Save ImageOpen Image (using #TmpD/ia)… University of Washington researchers have developed a method that uses a gaming graphics video card to control plasma formation in their prototype fusion reactor. The elusive nuclear fusion offers the potential for a safe, clean and abundant energy source. The process, which also occurs in the sun, involves plasmas, fluids composed of charged […]

Princeton Plasma Physics Laboratory’s advanced design of the world’s largest and most powerful stellarator demonstrates the ability to moderate heat loss from the plasma that fuels fusion reactions. A key hurdle facing fusion devices called stellarators, those twisty facilities that seek to harness on Earth the fusion reactions that power the sun and stars, has […]

Princeton Plasma Physics Laboratory scientists have found that sprinkling boron powder into fusion plasma could aid in harnessing the ultra-hot gas within a tokamak facility to produce heat to generate electricity without producing greenhouse gases or long-term radioactive waste. A major issue with operating the ring-shaped fusion facilities known as tokamaks is keeping the plasma […]

Princeton Plasma Physics Laboratory has developed an improved model for forecasting the crucial balance of pressure at the edge of a fusion plasma. A key requirement for future facilities that aim to capture and control on Earth the fusion energy that drives the sun and stars is accurate predictions of the pressure of the plasma. […]

Machine learning can help bring to Earth the clean fusion energy that powers the sun and stars. Researchers are using this form of artificial intelligence to create a model for rapid control of plasma – the state of matter composed of free electrons and atomic nuclei, or ions – that fuels fusion reactions. Machine learning […]

« go backkeep looking »
css.php