Apr
20
Purdue University’s research shows promise for developing high-energy-density rechargeable lithium-metal batteries and addressing the electrochemical oxidation instability of ether-based electrolytes. The research was conducted by Purdue University’s Vilas Pol Energy Research (ViPER) Group.
The research report has been published in Nature Communications, a peer-reviewed, open access, scientific journal published by Nature Portfolio. Zheng Li, a graduate research assistant in the Davidson School of Chemical Engineering, is the lead author.
The focus of the ViPER Group is the design and fabrication of high-capacity materials for next generation safer lithium-ion, lithium-sulfur, sodium-ion, solid-state and ultralow temperature battery systems.
Vilas Pol, a professor of chemical engineering said, “The rapid growth of energy storage technologies aimed at reducing proposed carbon emission targets, and huge demands of energy storage systems also exist in the consumer electronic and electric vehicle markets. They call for next-generation Li batteries with higher energy density with enhanced safety.” Pol, a professor of chemical engineering has led Purdue’s premier laboratories for battery fabrication, electrochemical and thermal safety testing since 2014.
Replacing the conventional graphite anode material with high-energy lithium metal is a very promising approach. However, this “holy grail” anode material suffers from challenging drawbacks of low cyclability and safety, etc.
“From the perspective of fundamental research on new LMB technologies, it is critical to meticulously develop suitable liquid electrolyte chemistry that works with promising anodes and cathodes,” Pol said.
In their study, the researchers demonstrated that low concentration ether-based electrolyte can successfully endure the long-term high voltage (4.3 V) operation of practical LMB under industry viable configurations, when using the highly nonpolar dipropyl ether as the electrolyte solvent.
Li pointed out, “Realizing the long-term cycling of lithium metal anode and high-voltage cathode simultaneously with dilute ether-based electrolyte is the main challenge in this study. Ethers have poor oxidation stability despite their reasonable compatibilities to the lithium metal anode. It was thus our target to extend their high-voltage capabilities. From the molecular level, we confirmed the essential correlations between the solvation behaviors of dilute ether-based electrolytes and their performance on high-voltage positive electrode.”
The correlations were further interpreted via detailed classical molecular dynamics (MD) simulations and density functional theory (DFT) calculations coupled with multimodal experimental analyses. It was demonstrated that regulating the solvation structure of ether-based electrolytes can rearrange the degradation order of solvation species and selectively form a robust protection on the cathode surface. It also adjusts the composition of surficial electric double layer to prevent the ether oxidation.
This unique kinetic-suppression approach differs from the conventional strategies such as using ultra-high concentration electrolyte or introducing molecular fluorination to improve the electrolyte stability, which dramatically increase the battery cost. The developed LMB by the ViPER group is expected to improve 40% of energy density, compared to the conventional Li-ion batteries.
The research work is funded by the Naval Enterprise Partnership Teaming with Universities for National Excellence (NEPTUNE), Office of Naval Research.
***
The full metal lithium battery chemistry keeps making progress. A cursory review of the potential battery chemistry designs suggests that lithium metal could be a premier battery design for a good period of time. But only if the problems can be worked out and the price of lithium isn’t driven out of reach. Even more of an issue is – will the best design be an economical item to produce at scale?
Lithium is already getting quite a price and the world economy isn’t exactly booming. Nevertheless, this is welcome high quality work that has pushed the technology closer to usefulness. Lets hope the last problem is about to be solved.