Researchers at RMIT University in Melbourne, Australia have used liquid metals to turn carbon dioxide back into solid coal, in a world-first breakthrough that could transform our approach to carbon capture and storage.  CO2 recycling may well have its breakout technology.

The RMIT led research team development is a new technique that can efficiently convert CO2 from a gas into solid particles of carbon.

Published in the journal Nature Communications, the research offers an alternative pathway for safely and permanently removing the greenhouse gas from our atmosphere.

Current technologies for carbon capture and storage focus on compressing CO2 into a liquid form, transporting it to a suitable site and injecting it underground.

But implementation has been hampered by engineering challenges, issues around economic viability and environmental concerns about possible leaks from the storage sites.

RMIT researcher Dr Torben Daeneke said converting CO2 into a solid could be a more sustainable approach.

Daeneke, an Australian Research Council DECRA Fellow, said, “While we can’t literally turn back time, turning carbon dioxide back into coal and burying it back in the ground is a bit like rewinding the emissions clock. To date, CO2 has only been converted into a solid at extremely high temperatures, making it industrially unviable. By using liquid metals as a catalyst, we’ve shown it’s possible to turn the gas back into carbon at room temperature, in a process that’s efficient and scalable. While more research needs to be done, it’s a crucial first step to delivering solid storage of carbon.”

Lead author, Dr Dorna Esrafilzadeh, a Vice-Chancellor’s Research Fellow in RMIT’s School of Engineering, developed the electrochemical technique to capture and convert atmospheric CO2 to storable solid carbon.

Australian Research Council DECRA Fellow Dr Torben Daeneke and Vice-Chancellor’s Research Fellow Dorna Esrafilzadeh. Image Credit: RMIT University. Click image for the largest view.

To convert CO2, the researchers designed a liquid metal catalyst with specific surface properties that made it extremely efficient at conducting electricity while chemically activating the surface.

The carbon dioxide is dissolved in a beaker filled with an electrolyte liquid and a small amount of the liquid metal, which is then charged with an electrical current.

The CO2 slowly converts into solid flakes of carbon, which are naturally detached from the liquid metal surface, allowing the continuous production of carbonaceous solid.

Esrafilzadeh said the carbon produced could also be used as an electrode and explained, “A side benefit of the process is that the carbon can hold electrical charge, becoming a supercapacitor, so it could potentially be used as a component in future vehicles. The process also produces synthetic fuel as a by-product, which could also have industrial applications.”

The research was conducted at RMIT’s MicroNano Research Facility and the RMIT Microscopy and Microanalysis Facility, with lead investigator, Honorary RMIT and ARC Laureate Fellow, Professor Kourosh Kalantar-Zadeh (now UNSW).

The research is supported by the Australian Research Council Center for Future Low-Energy Electronics Technologies (FLEET) and the ARC Center of Excellence for Electromaterials Science (ACES).

The collaboration involved researchers from Germany (University of Munster), China (Nanjing University of Aeronautics and Astronautics), the US (North Carolina State University) and Australia (UNSW, University of Wollongong, Monash University, QUT).

This news is fairly spectacular. Other than an end product of the Green folks’ nemesis coal, the productive value looks quite enticing. Perhaps more end results, say producing charcoal or graphite is extremely interesting.

Effluent harvesting at coal and gas fired power plants may well be practical with the question of the current required and the liquid metal costs coming in with low prices. As simple as it sounds some transport vehicles may also have a new revenue source.

But coal is a very very low cost fuel often transported thousands of miles. Higher value forms may provide a faster more economy supporting ignition for the technology’s market. Make the carbon slough off one atom think and they’ll have their doors beaten down. The weird thing will be seeing coal as a renewable fuel.


2 Comments so far

  1. Kaiser Derden on March 5, 2019 7:05 AM

    the only reason to do this would be to reburn the carbon … otherwise its a waste of money

  2. Leon on March 5, 2019 1:23 PM

    Use a pure source of carbon going into a fuel cell and get pure CO2 out. Then convert the CO2 back into solid carbon and repeat. Solid carbon fuel cells can be located in dense urban environments. CO2 reuse has enormous potential. Coal and gas turbines have issues with impurities while using pure carbon and fuel cells should allow CO2 recycling. Extremely interesting indeed.

Name (required)

Email (required)


Speak your mind