Dec
12
New Solvent For Biomass to Fuel Processes
December 12, 2017 | 4 Comments
Kanazawa University researchers have found a novel carboxylate-type liquid zwitterion they developed as a solvent of biomass, which could dissolve cellulose with very low toxicity to microorganisms. Use of this novel solvent enables a significant reduction of energy cost for ethanol production from non-food biomass. Thus, second-generation biofuel ethanol production is in sight of practical implementation.
First-generation biofuel, industrialized, ethanol, is produced from foodstuffs like sugarcane and corn, thus posing concerns about a possible future shortage of food. It is therefore necessary to produce ethanol from non-food biomass like weeds, waste paper, paper cups, etc. (second-generation biofuel ethanol). The solvents needed for the production of second-generation biofuel ethanol known so far are highly toxic to microorganisms. In order to remove such highly toxic solvents, complicated processes are necessary, such as washing with water, separation by centrifugation, compression, etc.
As a result, the energy recovered in the ethanol produced is less than that required to produce it, i.e., there is a negative energy balance (more production of ethanol imposes more load on the environment). It was considered impossible to solve this problem, since a harsh solvent was needed to break down recalcitrant plant materials like cellulose, while such a harsh solvent would kill microorganisms (with fragile and very vulnerable cell membranes) that play essential roles in the fermentation necessary for producing ethanol.
In this study, published in the Journal of the American Chemical Society, the researchers of Kanazawa University, Japan, attacked the problem by succeeding in reducing the toxicity to microorganisms through developing a novel solvent, a carboxylate-type liquid zwitterion*1 (See glossary below), for dissolving biomass cellulose. The EC50, the concentration of a substance that reduces the growth of Escherichia coli to 50%, was found to be 158 g/L for the newly developed carboxylate-type liquid zwitterion, whereas the EC50 of ionic liquid*2, one of the conventional solvents of cellulose, was 9 g/L. This indicates that the novel carboxylate-type liquid zwitterion shows 17 fold lower toxicity than the ionic liquid.
With Escherichia coli that can produce ethanol, fermentation ability was examined and revealed to be almost maximal in 0.5 mol/L carboxylate-type liquid zwitterion with a final ethanol concentration of 21 g/L. On the other hand, the same experiment with the ionic liquid produced only 1 g/L ethanol. Thus, fermentation in the presence of the carboxylate-type liquid zwitterion produced 21 times more ethanol than that using the ionic liquid.
In another experiment, bagasse was used as a starting plant biomass for ethanol production without washing/separation processes. Fermentation in the presence of the carboxylate-type liquid zwitterion produced 1.4 g/L ethanol, while no ethanol was obtained with the ionic liquid due to its high toxicity.
With these experimental results, it is shown that, using the carboxylate-type liquid zwitterion, plant biomass could be converted into ethanol in a single reaction pot without washing/separation processes. This should be a big step forward in the production/utilization of second-generation biofuel ethanol through reducing large amounts of energy input.
Besides the first-generation and second-generation biofuel ethanol, a third-generation biofuel, a kind of oil, may be made from some algal species. In order to obtain such a third-generation biofuel from algae, polysaccharides like cellulose, which are main components of cell walls, have to be dissolved. The energy efficiency would be much increased if dissolved polysaccharides could be converted into ethanol. Further development of the team’s current study would significantly contribute to the production of not only second-generation but also third-generation biofuel ethanol.
A lot of attention has been attracted by the unique characteristics of the carboxylate-type liquid zwitterion, and three international collaborations are currently going on, one of which is with Rutgers University, U.S.A.
This looks like the first successful study results of the bleeding edge of research into the carboxylate type of liquids. These are quite promising results. Perhaps one day the immense volumes of wood based solid wastes going into landfills will be redirected into second uses as fuels.
[Glossary]
1. Carboxylate-type liquid zwitterion
Newly developed solvent that can dissolve biomass (cellulose) with low toxicity to microorganisms. The difference from ionic liquid is that the positive charge and the negative charge are covalently bonded. This liquid zwitterion is the second one to be reported, but this is the first that has a carboxylate anion.
2. Ionic liquid
Salts that are liquid below 100 ÂșC. They consist of various pairs of positively charged and negatively charged ions, and specific ionic liquids are known to be able to dissolve biomass and cellulose efficiently.
Comments
4 Comments so far
This looks like the first successful study results of the bleeding edge of research into the carboxylate type of liquids.
With these experimental results, it is shown that, using the carboxylate-type liquid zwitterion, plant biomass could be converted into ethanol in a single reaction pot without washing/separation processes.
In another experiment, bagasse was used as a starting plant biomass for ethanol production without washing/separation processes.
A lot of attention has been attracted by the unique characteristics of the carboxylate-type liquid zwitterion, and three international collaborations are currently going on, one of which is with Rutgers University, U.S.A.