Sweden’s University of Borås doctoral student Ramkumar Nair has shown it is possible to produce bioethanol from agricultural and industrial waste in existing plants in a socioeconomically sustainable way.

Nair said, “I have been verifying a process that we hope will work in an industrial scale, when it comes to using existing ethanol factories. Thanks to that process, the industry can become more sustainable and use agricultural or industrial waste for the production of bioethanol.”

Bioethanol is used for fuel for ethanol cars, among other things. Usually, wheat, sugar canes, or corn are used for ethanol production. In Sweden, wheat is the most common.

“But these are crops that could be used as human nutrition,” he said. “It is more sustainable if we could use waste to create fuel, and this is something we have been working on in several projects here at the University of Borås.

Ramkumar Nair In His Lab. Image Credit: Lena M Fredriksson. Click image for the largest view.

Nair explained that these research and pilots project where waste is used are called the second generation ethanol processes, whereas the current industrial production is called the first generation ethanol process. Ramkumar has now verified a process that integrates the first and the second generation ethanol processes.

“This means that agricultural residues, such as straw, bran, or the like could be used for making ethanol without making any major investments in the factories. All we need is already there. You can use the factories existing reactors. This also eliminates the burden of using foodstuff to produce vehicle fuel,” he said.

During his research, Ramkumar analyzed the structure of the first generation ethanol processes and found out where the focus should be. The biggest challenge was not to add chemicals to break down the waste material for the ethanol process, as the residues from the ethanol factories among other things will be used for animal feed.

“What we added should not stop the fermentation,” said Nair. “After several tests, the choice was to add phosphoric acid. It is good for the animals that eat the leftovers and it gives good results in the ethanol fermentation process.”

The entire method was first tested in a small scale in the lab at the University of Borås, later in a larger facility at Borås Energi och Miljö, and finally on an even larger scale at SEKAB in Örnsköldsvik.

In order to succeed with the integration, an edible filamentous fungus was used, Neurospora intermedia, which is a fungus used for human consumption, for example in Indonesia. The fungus has a good ability to produce ethanol and is also a good ingredient in animal feed due to its high protein content. This fungus is easy to grow in a lab environment.

Nair continued explaining, “One difficulty when using the fungus is that it has a tendency to clump, which creates challenges in the industrial process. But I have managed this fungus to form small balls or pellets instead of lumps. There are other fungi that form pellets, but I am the first one to have made the Neurospora intermedia to do it. Pellets do not get stuck; they roll off, and are better for the fermentation process in some instances.”

It was complicated to find out how to do it, but once it was found the method for making the fungus form pellets instead of lumps is quite simple.

There is hope the project will continue on with industry, to develop and fine-tune the process at a larger scale. The entire concept of integration and the results are now included in a patent owned by Lantmännen Agroetanol, which is one of the partners of Ramkumar Nair’s research project.

“Now there is a research-based verification for the process, so the industry can carry on and continue to develop it,” said Nair. “I hope that in a few years, I will see a large-scaled first generation ethanol factory that produces bioethanol from agricultural waste, using this integration model.”

Nair publicly defended his doctoral thesis in the field of resource recovery at the University of Borås on October 6th. His principal supervisor was Professor Mohammad Taherzadeh and assistant supervisor Senior lecturer Patrik Lennartsson.

The research project was mainly financed by Formas, A Swedish Research Council for Sustainable Development, and the Swedish Energy Agency. The project has been carried out at the Swedish Centre for Resource Recovery at the University of Borås, Sweden.

The progress sure sounds good. Perhaps it will work in Sweden. But in other parts of the world there is considerable resistance to total crop removal from the land. Agronomists are usually appalled at the impact that total crop removal has on soils, and many soils are already threatened by common crops for human use.

This is a story that is far from over.


Comments

4 Comments so far

  1. Benjamin Cole on November 9, 2017 9:34 PM

    You should change your blog to concentrate on technologies being introduced or on the cusp.

  2. Jessica Zhang on November 12, 2017 11:57 PM

    In order to succeed with the integration, an edible filamentous fungus was used, Neurospora intermedia, which is a fungus used for human consumption, for example in Indonesia.

  3. mobile concrete pump on November 13, 2017 1:05 AM

    It was complicated to find out how to do it, but once it was found the method for making the fungus form pellets instead of lumps is quite simple.

  4. GreenBeston on May 18, 2018 11:52 PM

    Agricultural residuals are actually holding a high value of recycling and reusing. Hope more and more reasonable recycling ways of them can be found.

Name (required)

Email (required)

Website

Speak your mind

css.php