Researchers at the U.S. Naval Research Laboratory’s (NRL) Chemistry Division have developed a safer nickel zinc battery chemistry to replace fire-prone lithium-ion batteries.

Joseph Parker, Jeffrey Long, and Debra Rolison from NRL’s Advanced Electrochemical Materials group are leading an effort to create an entire family of safer, water-based, zinc batteries. They have demonstrated a breakthrough for nickel-zinc (Ni-Zn) batteries in which a three-dimensional (3-D) Zn “sponge” replaces the powdered zinc anode traditionally used.

With 3-D Zn, the battery provides an energy content and rechargeability that rival lithium-ion batteries while avoiding the safety issues that continue to plague lithium.

Their research paper has been published in Science. Additional contributors to this research article include former NRL staff scientist, Christopher Chervin, National Research Council postdoctoral associate, Irina Pala, as well as industry partners Meinrad Machler and CEO of EnZinc, Inc., Michael Burz.  There is also a video on the NRL site that explains and shows a lab build of a nickel zinc battery.

The NRL team Debra R. Rolison, Jeffrey W. Long, and Joseph F. Parker were recognized June 22, 2016 by now-acting Secretary of the Navy Sean J. Stackley (far left), and Delores Etter (far right) with Dr. Delores M. Etter Awards for their work in cracking a centuries-old problem and transforming the future capabilities and performance of the entire family of Zinc-based alkaline batteries. Image Credit: U.S. Naval Research Laboratory. Click image for the largest view or click the link at the top for the NRL link and click the photo on that site.

Dr. Rolison, senior scientist and principal investigator on the project said, “Our team at the NRL pioneered the architectural approach to the redesign of electrodes for next-generation energy storage. The 3-D sponge form factor allows us to reimagine zinc, a well-known battery material, for the 21st century.”

Zinc-based batteries are the go-to global battery for single-use applications such as hearing aids, but are not considered rechargeable in practice due to their tendency to grow conductive whiskers (dendrites) inside the battery, which can grow long enough to cause short circuits.

Parker, lead author of the paper explained, “The key to realizing rechargeable zinc-based batteries lies in controlling the behavior of the zinc during cycling. Electric currents are more uniformly distributed within the sponge, making it physically difficult to form dendrites.”

The NRL team demonstrated Ni-3-D Zn performance in three ways: extending lifetime in single-use cells; cycling cells more than 100 times at an energy content competitive with lithium-ion batteries; and cycling cells more than 50,000 times in short duty-cycles with intermittent power bursts, similar to how batteries are used in some hybrid vehicles.

With the benefits of rechargeability, the 3-D Zn sponge is ready to be deployed within the entire family of Zn-based alkaline batteries across the civilian and military sectors.

Dr. Long said about looking ahead, “We can now offer an energy-relevant alternative, from drop-in replacements for lithium-ion to new opportunities in portable and wearable power, and manned and unmanned electric vehicles, while reducing safety hazards, easing transportation restrictions, and using earth-abundant materials.”

This technology is coming. One would expect the nickel zinc batteries to be way less costly than lithium. Here again, a technology benefit from the military for the civilian economy! Go Navy! Thanks!


1 Comment so far

  1. Roseland67 on May 3, 2017 7:34 AM


    A little more believable than most,
    Can you publish Energy and power density figures?

Name (required)

Email (required)


Speak your mind