Researchers at the Institute for Advanced Sustainability Studies (IASS) in Potsdam and the Karlsruhe Institute of Technology (KIT) are demonstrating a process called ‘methane cracking’. This reaction occurs at high temperatures (750°C and above) and does not release any harmful emissions. The two institutions have been researching an innovative technique to extract hydrogen from methane in a clean and efficient way.

Instead of burning methane (CH4) the main component of natural gas, its molecular components, hydrogen (H2) and carbon (C), are separated, with the hydrogen burned and the carbon stored away.

Solid black carbon is a by-product of methane cracking. Image Credit: Karlsruhe Institute of Technology. Click image for the largest view.

Solid black carbon is a by-product of methane cracking.  Image Credit: Karlsruhe Institute of Technology. Click image for the largest view.

With two years of intensive experiments using the experimental reactor running reliably and continuously, the proof-of-principle has now been provided and the future potential of this technology is thought to be apparent.

The combustion of fossil fuels to produce electricity, power car engines or generate heat is said to be a major source of harmful carbon dioxide emissions. In particular methane – the main component of natural gas – is a widely used fossil fuel whose worldwide production is forecast to rise dramatically in the coming decades.

The believers say that left unchecked, this continued reliance on conventional fossil fuel technologies will greatly hamper our efforts at mitigating climate change. This is why researchers at the IASS and KIT have decided to investigate an alternative and more sustainable approach: what if we could extract the energy content of methane, in the form of hydrogen, without generating any carbon dioxide in the process?

The researchers propose instead of burning methane its molecular components, hydrogen and carbon, be separated with ‘methane cracking’.

The first product, hydrogen, is an energy vector best known for its clean combustion and high energy density per unit mass. In fact, many view it as an important component of a future, sustainable energy system. Proposed applications include fuel cells, electricity generation and hydrogen-powered vehicles.

But today hydrogen is already an important industrial commodity, used in large quantities for the production of ammonia – a key precursor for the fertilizer industry. Most of the world’s hydrogen production is currently based on conventional technologies like steam methane forming (SMR), which also uses natural gas as feedstock but releases significant amounts of carbon dioxide in the process. Indeed, carbon dioxide emissions from the ammonia industry alone amount to approximately 200 million tons per year – by comparison, the German nation generates around 800 million tons of carbon dioxide per year.

The second product, solid black carbon, is also an increasingly important industrial commodity. It is already widely employed in the production of steel, carbon fibers and many carbon-based structural materials. The black carbon derived from the novel cracking process is of high quality and particularly pure powder. Its value as a marketable product therefore enhances the economic viability of methane cracking. Alternatively, black carbon can be stored away, using procedures that are much simpler, safer and cheaper than the storing of carbon dioxide.

Methane cracking itself is not an entirely new idea: in the last two decades, many experiments in different institutions have been carried out that have proven its technical feasibility. But these past attempts were limited by issues such as carbon clogging and low conversion rates.

The IASS and KIT researchers decided to build on this knowledge base and go one step further, setting up an experimental reactor that could demonstrate the potential of methane cracking and overcome previous obstacles. The starting point is a novel reactor design, as proposed by Nobel Laureate and former IASS Scientific Director Carlo Rubbia and based on liquid metal technology.

Fine methane bubbles are injected at the bottom of a column filled with molten tin. The cracking reaction happens when these bubbles rise to the surface of the liquid metal. Carbon separates on the surface of the bubbles and is deposited as a powder at the top end of the reactor when they disintegrate.

This idea was put to the test during a series of experimental campaigns that ran from late 2012 to the spring of 2015 in KIT’s KALLA (KArlsruhe Liquid Metal LAboratory). Researchers were able to evaluate different parameters and options, such as temperature, construction materials and residence time. The final design is a 1.2 meter high device made of a combination of quartz and stainless steel, which uses both pure tin and a packed bed structure consisting of pieces of quartz.

Professor Thomas Wetzel, head of the KALLA laboratory at KIT said, “In the most recent experiments in April 2015, our reactor operated without interruptions for two weeks, producing hydrogen with a 78% conversion rate at temperatures of 1200°C. In particular the continuous operation is a decisive component of the kind of reliability that would be needed for an industrial-scale reactor.”

The innovative reactor is resistant to corrosion, and clogging is avoided because the microgranular carbon powder produced can be easily separated. The reactor thus guarantees the technical preconditions that would be needed for the continuous operation of an industrial-scale reactor.

While these remain laboratory-scale experiments, researchers can extrapolate from them to gain insights into how methane cracking could be integrated into the energy system and, more specifically, what its contribution to sustainability could be. To this end, the IASS is collaborating with RWTH Aachen University to conduct a life cycle assessment (LCA) of a hypothetical commercial methane cracking device based on a scaling-up of the prototype.

Notably, the researchers assume that some of the produced hydrogen is used to generate the required process heat. The compared hydrogen production technologies were steam methane reforming (SMR) and water electrolysis coupled with renewable electricity. With respect to emissions of carbon dioxide equivalent per unit of hydrogen, the LCA showed that methane cracking is comparable to water electrolysis and more than 50% cleaner than SMR.

Beyond that IASS researchers have also analyzed the economic aspects of methane cracking. At this stage, cost estimates are uncertain, since methane cracking is not yet a fully mature technology. However, preliminary calculations show that it could achieve costs of 1.9 to 3.3 euro per kilogram of hydrogen at German natural gas prices, and without taking the market value of carbon into consideration.

Professor Rubbia said, “Our experimental results as well as the environmental and economic assessments all point to methane cracking as a clear candidate option in our portfolio of measures to transform the energy system. This could be a gap-bridging technology, making it possible to tap into the energy potential of natural gas while safeguarding the climate and facilitating the integration of a clean energy carrier like hydrogen.”

In the next phase of the process, the IASS and KIT will focus on optimizing some aspects of the reactor design, such as the carbon removal process, and progressively scaling it up to accommodate higher flow rates.

There are some glaring omissions in the press release.

The researchers have not provided a published paper, a link or even a mention. This not is not meant to impinge the credibility, rather raise our attention that perhaps the researchers have more information that they don’t want shared for replication before a patent proceeding is underway or simply that as a Nobel Laureate the need “to publish or perish concept” does not have such imperative power.

The next matter is the value of the carbon. A particularly pure high quality powder will have value. No mention is made of the structure, other than pure, and in a world of increasing uses for graphene, other carbon nano products and synthetic diamonds, a very pure carbon source might have a significant value.

Lastly is overlooking the heat unit production. The combustion of natural gas produces heat from both the oxidation of the hydrogen and the carbon. Removing the carbon is going to take carbon combustion heat units out of the end product. The net energy release for work is going to be significantly reduced.

The likely factually correct and politically incorrect note is the most interested folks are going to be process engineers in the anhydrous ammonia and oil refining industries, which will become good for consumers if efficiencies and cost savings are found in the technology.


1 Comment so far

  1. Jagdish on November 24, 2015 3:49 AM

    An RMFC is a far better idea than creating hydrogen storage problems with cracking of methane.It is quite efficient and results in noiseless running of vehicles or machines by electric motors.

Name (required)

Email (required)


Speak your mind