Purdue University research has suggested pollen carbon as a potential use for anodes in lithium-ion batteries.

“Our findings have demonstrated that renewable pollens could produce carbon architectures for anode applications in energy storage devices,” said Vilas Pol, an associate professor in the School of Chemical Engineering and the School of Materials Engineering at Purdue University.

This scanning electron microscope image shows bee pollen studied for potential use as electrodes for lithium-ion batteries. Color was added to the original black-and-white image. Image Credit: Purdue University / Jialiang Tang, Kay J. Hagen. Click image for the largest view.

This scanning electron microscope image shows bee pollen studied for potential use as electrodes for lithium-ion batteries. Color was added to the original black-and-white image. Image Credit: Purdue University / Jialiang Tang, Kay J. Hagen. Click image for the largest view.

Batteries have two electrodes, called an anode and a cathode. The anodes in most of today’s lithium-ion batteries are made of graphite. Lithium ions are contained in a liquid called an electrolyte, and these ions are stored in the anode during recharging.

The researchers tested bee pollen- and cattail pollen-derived carbons as anodes. Bee pollen is a mixture of different pollen types collected by honey bees, the cattail pollens all have the same shape.

“Both are abundantly available,” said Pol, who worked with doctoral student Jialiang Tang. “The bottom line here is we want to learn something from nature that could be useful in creating better batteries with renewable feedstock.”

The research findings are detailed in a paper published in Nature’s Scientific Reports.

“I started looking into pollens when my mom told me she had developed pollen allergy symptoms about two years ago,” Tang said. “I was fascinated by the beauty and diversity of pollen microstructures. But the idea of using them as battery anodes did not really kick in until I started working on battery research and learned more about carbonization of biomass.”

The researchers processed the pollen under high temperatures in a chamber containing argon gas using a procedure called pyrolysis, yielding pure carbon in the original shape of the pollen particles. They were further processed, or “activated,” by heating at lower temperature – about 300º C – in the presence of oxygen, forming pores in the carbon structures to increase their energy-storage capacity.

The research showed the pollen anodes could be charged at various rates. While charging for 10 hours resulted in a full charge, charging them for only one hour resulted in more than half of a full charge, Pol said. “The theoretical capacity of graphite is 372 milliamp hours per gram, and we achieved 200 milliamp hours after one hour of charging,” he said.

The researchers tested the carbon at 25º C and 50º C to simulate a range of climates. “This is because the weather-based degradation of batteries is totally different in New Mexico compared to Indiana,” Pol said.

The findings ultimately showed the cattail pollens performed better than bee pollen.

The work is ongoing. Whereas the current work studied the pollen in only anodes, future research will include work to study them in a full-cell battery with a commercial cathode.

“We are just introducing the fascinating concept here,” Pol said. “Further work is needed to determine how practical it might be.”

Electron microscopy studies were performed at the Birck Nanotechnology Center in Purdue’s Discovery Park.

This is an amazing intuitive discovery. Its not likely that the cattail pollen can be synthesized easily. But the idea of farming cattails is an interesting idea. One wonders what the rest of the plant might have as a value.

The cost of a cattail pollen product remains unknown or even thought much about. Cattails grow in wet, gummy soils called “wetlands” that in the U.S are “protected” by the Environmental Protection Agency. They will have to be cultivated, or farmed, and as a wide expanse of farmers have found, making a wet spot gets EPA oversight costing tens of thousands of dollars in legal fees and likely returning the land back to its original state.

Its a great idea one expects will hit the bureaucratic wall before it gets very far. One suspects there will need to be an act of Congress before this kind of crop has a future. Maybe we could hide the cattails in a green house.


Comments

Name (required)

Email (required)

Website

Speak your mind

css.php